Source code for platypush.plugins.ml.cv
import os
from platypush.plugins import Plugin, action
class MlModel:
def __init__(self, model_file, classes=None):
import cv2
self.model_file = os.path.abspath(os.path.expanduser(model_file))
self.classes = classes or []
self.model = cv2.dnn.readNet(model_file)
def predict(self, img, resize=None, color_convert=None):
import cv2
import numpy as np
if isinstance(img, str):
img = cv2.imread(os.path.abspath(os.path.expanduser(img)))
if color_convert:
if isinstance(color_convert, str):
color_convert = getattr(cv2, color_convert)
img = cv2.cvtColor(img, color_convert)
if resize:
img = cv2.dnn.blobFromImage(img, size=tuple(resize), mean=0.5)
else:
img = cv2.dnn.blobFromImage(img, mean=0.5)
self.model.setInput(img)
output = self.model.forward()
prediction = int(np.argmax(output))
if self.classes:
prediction = self.classes[prediction]
return prediction
[docs]
class MlCvPlugin(Plugin):
"""
Plugin to train and make computer vision predictions using machine learning models.
Also make sure that your OpenCV installation comes with the ``dnn`` module. To test it::
>>> import cv2.dnn
"""
[docs]
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.models = {}
[docs]
@action
def predict(self, img, model_file, classes=None, resize=None, color_convert=None):
"""
Make predictions for an input image using a model file. Supported model formats include all the
types supported by cv2.dnn (currently supported: Caffe, TensorFlow, Torch, Darknet, DLDT).
:param model_file: Path to the model file
:param img: Path to the image
:param classes: List of string labels associated with the output values (e.g. ['negative', 'positive']).
If not set then the index of the output neuron with highest value will be returned.
:param resize: Tuple or list with the resize factor to be applied to the image before being fed to
the model (default: None)
:param color_convert: Color conversion to be applied to the image before being fed to the model.
It points to a cv2 color conversion constant (e.g. ``cv2.COLOR_BGR2GRAY``) and it can be either
the constant value itself or a string (e.g. 'COLOR_BGR2GRAY').
"""
model_file = os.path.abspath(os.path.expanduser(model_file))
if model_file not in self.models:
self.models[model_file] = MlModel(model_file, classes=classes)
return self.models[model_file].predict(
img, resize=resize, color_convert=color_convert
)
# vim:sw=4:ts=4:et: